cellpack.autopack.writers package¶
Submodules¶
cellpack.autopack.writers.ImageWriter module¶
- class cellpack.autopack.writers.ImageWriter.ImageWriter(env, name=None, output_path=None, voxel_size=None, hollow=False, convolution_options=None, projection_axis='z')[source]¶
Bases:
object
- static convolve_channel(channel, psf)[source]¶
Convolves a channel with a psf
- Parameters:
channel (numpy.ndarray) – channel to be convolved
psf (numpy.ndarray) – psf
- Returns:
convolved channel
- Return type:
numpy.ndarray
- convolve_image(image, psf='gaussian', psf_parameters=None)[source]¶
Convolves the image with a psf
- Parameters:
image (numpy.ndarray) – image to be convolved
psf (str or numpy.ndarray) – psf type
psf_parameters (dict) – psf parameters
- Returns:
convolved image
- Return type:
numpy.ndarray
- static create_box_psf(size=None)[source]¶
Creates a box psf
- Parameters:
size (np.ndarray) – size of the psf
- Returns:
psf
- Return type:
numpy.ndarray
cellpack.autopack.writers.MarkdownWriter module¶
Module contents¶
Write out data for cellpack.
- class cellpack.autopack.writers.NumpyArrayEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)[source]¶
Bases:
JSONEncoder
- default(obj)[source]¶
Implement this method in a subclass such that it returns a serializable object for
o
, or calls the base implementation (to raise aTypeError
).For example, to support arbitrary iterators, you could implement default like this:
def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) # Let the base class default method raise the TypeError return super().default(o)
- class cellpack.autopack.writers.Writer(format='simularium')[source]¶
Bases:
object
- save(env, kwds=None, result=False, grid=False, packing_options=False, indent=False, quaternion=False, transpose=False, seed_to_results_map=None)[source]¶